Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions

Abstract Shock-wave studies of ice under uniaxial strain conditions have been conducted at stress levels up to 3.6 GPa. A light-gas gun accelerated the flat-faced projectile used to impact the ice-containing targets. The ice samples were initially at ambient pressure and at temperatures of –10 ± 2°...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Larson, Donald B.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1984
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000005992
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000005992
id crcambridgeupr:10.1017/s0022143000005992
record_format openpolar
spelling crcambridgeupr:10.1017/s0022143000005992 2023-06-11T04:13:25+02:00 Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions Larson, Donald B. 1984 http://dx.doi.org/10.1017/s0022143000005992 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000005992 en eng Cambridge University Press (CUP) Journal of Glaciology volume 30, issue 105, page 235-240 ISSN 0022-1430 1727-5652 Earth-Surface Processes journal-article 1984 crcambridgeupr https://doi.org/10.1017/s0022143000005992 2023-05-01T18:19:28Z Abstract Shock-wave studies of ice under uniaxial strain conditions have been conducted at stress levels up to 3.6 GPa. A light-gas gun accelerated the flat-faced projectile used to impact the ice-containing targets. The ice samples were initially at ambient pressure and at temperatures of –10 ± 2° C. Gages were implaced at different distances in the ice along the path of the shock wave to measure particle velocity time histories inside the ice samples. The recorded time histories of particle velocity show a precursor wave with an average wave velocity of 3.7 km/s and an average particle velocity amplitude of 0.06 km/s. This wave is travelling at a wave velocity approximately 10% greater than longitudinal sound speed and is believed to originate because of the onset of melting of ice I. The particle velocity data from these experiments were converted to stresses and volumes using Lagrangian gage analysis and the assumption of a simple non-steady wave. This conversion provides a complete compression cycle (which includes both loading and unloading paths) for comparison with static measurements. All experiments show the onset of melting at 0.15 to 0.2 GPa. Experiments with maximum stress states between 0.2 and 0.5 GPa yield results which suggest that a mixed phase of ice I and liquid water exists at these conditions. For maximum loading stresses between 0.6 and 1.7 GPa the experimental results suggest that the final state is predominately ice VI. In these experiments the specific volume upon compression is changed from 1.09 m 3 /Mg to approximately 0.76 m 3 /Mg, which represents compaction of approximately 30%. The unloading paths determined from these experiments indicate that ice VI remains in a “frozen” or metastable state during most of the unloading process. This hysteresis in the compression cycle gives rise to a large “loss” of shock-wave energy to the transformation process. At stress levels above 2.2 GPa, ice VII should be the stable form for water according to static compression measurements. ... Article in Journal/Newspaper Journal of Glaciology Cambridge University Press (via Crossref) Journal of Glaciology 30 105 235 240
institution Open Polar
collection Cambridge University Press (via Crossref)
op_collection_id crcambridgeupr
language English
topic Earth-Surface Processes
spellingShingle Earth-Surface Processes
Larson, Donald B.
Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions
topic_facet Earth-Surface Processes
description Abstract Shock-wave studies of ice under uniaxial strain conditions have been conducted at stress levels up to 3.6 GPa. A light-gas gun accelerated the flat-faced projectile used to impact the ice-containing targets. The ice samples were initially at ambient pressure and at temperatures of –10 ± 2° C. Gages were implaced at different distances in the ice along the path of the shock wave to measure particle velocity time histories inside the ice samples. The recorded time histories of particle velocity show a precursor wave with an average wave velocity of 3.7 km/s and an average particle velocity amplitude of 0.06 km/s. This wave is travelling at a wave velocity approximately 10% greater than longitudinal sound speed and is believed to originate because of the onset of melting of ice I. The particle velocity data from these experiments were converted to stresses and volumes using Lagrangian gage analysis and the assumption of a simple non-steady wave. This conversion provides a complete compression cycle (which includes both loading and unloading paths) for comparison with static measurements. All experiments show the onset of melting at 0.15 to 0.2 GPa. Experiments with maximum stress states between 0.2 and 0.5 GPa yield results which suggest that a mixed phase of ice I and liquid water exists at these conditions. For maximum loading stresses between 0.6 and 1.7 GPa the experimental results suggest that the final state is predominately ice VI. In these experiments the specific volume upon compression is changed from 1.09 m 3 /Mg to approximately 0.76 m 3 /Mg, which represents compaction of approximately 30%. The unloading paths determined from these experiments indicate that ice VI remains in a “frozen” or metastable state during most of the unloading process. This hysteresis in the compression cycle gives rise to a large “loss” of shock-wave energy to the transformation process. At stress levels above 2.2 GPa, ice VII should be the stable form for water according to static compression measurements. ...
format Article in Journal/Newspaper
author Larson, Donald B.
author_facet Larson, Donald B.
author_sort Larson, Donald B.
title Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions
title_short Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions
title_full Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions
title_fullStr Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions
title_full_unstemmed Shock-Wave Studies Of Ice Under Uniaxial Strain Conditions
title_sort shock-wave studies of ice under uniaxial strain conditions
publisher Cambridge University Press (CUP)
publishDate 1984
url http://dx.doi.org/10.1017/s0022143000005992
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000005992
genre Journal of Glaciology
genre_facet Journal of Glaciology
op_source Journal of Glaciology
volume 30, issue 105, page 235-240
ISSN 0022-1430 1727-5652
op_doi https://doi.org/10.1017/s0022143000005992
container_title Journal of Glaciology
container_volume 30
container_issue 105
container_start_page 235
op_container_end_page 240
_version_ 1768390433498464256