Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model

Abstract The evolution of ice-sheet configuration and flow pattern in Fennoscandia through the last glacial cycle was reconstructed using a glacial geological inversion model, i.e. a theoretical model that formalises the procedure of using the landform record to reconstruct ice sheets. The model use...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Kleman, Johan, Hättestrand, Clas, Borgström, Ingmar, Stroeven, Arjen
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1997
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000003233
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000003233
id crcambridgeupr:10.1017/s0022143000003233
record_format openpolar
spelling crcambridgeupr:10.1017/s0022143000003233 2024-09-15T18:06:00+00:00 Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model Kleman, Johan Hättestrand, Clas Borgström, Ingmar Stroeven, Arjen 1997 http://dx.doi.org/10.1017/s0022143000003233 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000003233 en eng Cambridge University Press (CUP) Journal of Glaciology volume 43, issue 144, page 283-299 ISSN 0022-1430 1727-5652 journal-article 1997 crcambridgeupr https://doi.org/10.1017/s0022143000003233 2024-07-31T04:03:43Z Abstract The evolution of ice-sheet configuration and flow pattern in Fennoscandia through the last glacial cycle was reconstructed using a glacial geological inversion model, i.e. a theoretical model that formalises the procedure of using the landform record to reconstruct ice sheets. The model uses mapped flow traces and deglacial melt-water landforms, as well as relative chronologies derived from cross-cutting striae and till lineations, as input data. Flow-trace systems were classified into four types: (i) time-transgressive wet-bed deglacial fans, (ii) time-transgressive frozen-bed deglacial fans, (iii) surge fans, and (iv) synchronous non-deglacial (event) fans. Using relative chronologies and aggregation of fans into glaciologically plausible patterns, a series of ice-sheet Configurations at different time slices was erected. A chronology was constructed through correlation with dated stratigraphical records and proxy data reflecting global ice volume. Geological evidence exists for several discrete ice-sheet configurations centred over the Scandinavian mountain range during the early Weichselian. The build-up of the main Weichselian Fennoscandian ice sheet started at approximately 70 Ka, and our results indicate that it was characterised by an ice sheet with a centre of mass located over southern Norway. This configuration had a flow pattern which is poorly reproduced by current numerical models of the Fennoscandian ice sheet. At the Last Glacial Maximum the main ice divide was located overthe Gulf of Bothnia. A major bend in the ice divide was caused by outflow of ice to the northwest over the lowest part of the Scandinavian mountain chain. Widespread areas of preserved pre-late-Weichselian landscapes indicate that the ice sheet had a frozen-bed core area, which was only partly diminished in size by inward-transgressive wet-bed zones during the decay phase. Article in Journal/Newspaper Fennoscandia Fennoscandian Ice Sheet Journal of Glaciology Cambridge University Press Journal of Glaciology 43 144 283 299
institution Open Polar
collection Cambridge University Press
op_collection_id crcambridgeupr
language English
description Abstract The evolution of ice-sheet configuration and flow pattern in Fennoscandia through the last glacial cycle was reconstructed using a glacial geological inversion model, i.e. a theoretical model that formalises the procedure of using the landform record to reconstruct ice sheets. The model uses mapped flow traces and deglacial melt-water landforms, as well as relative chronologies derived from cross-cutting striae and till lineations, as input data. Flow-trace systems were classified into four types: (i) time-transgressive wet-bed deglacial fans, (ii) time-transgressive frozen-bed deglacial fans, (iii) surge fans, and (iv) synchronous non-deglacial (event) fans. Using relative chronologies and aggregation of fans into glaciologically plausible patterns, a series of ice-sheet Configurations at different time slices was erected. A chronology was constructed through correlation with dated stratigraphical records and proxy data reflecting global ice volume. Geological evidence exists for several discrete ice-sheet configurations centred over the Scandinavian mountain range during the early Weichselian. The build-up of the main Weichselian Fennoscandian ice sheet started at approximately 70 Ka, and our results indicate that it was characterised by an ice sheet with a centre of mass located over southern Norway. This configuration had a flow pattern which is poorly reproduced by current numerical models of the Fennoscandian ice sheet. At the Last Glacial Maximum the main ice divide was located overthe Gulf of Bothnia. A major bend in the ice divide was caused by outflow of ice to the northwest over the lowest part of the Scandinavian mountain chain. Widespread areas of preserved pre-late-Weichselian landscapes indicate that the ice sheet had a frozen-bed core area, which was only partly diminished in size by inward-transgressive wet-bed zones during the decay phase.
format Article in Journal/Newspaper
author Kleman, Johan
Hättestrand, Clas
Borgström, Ingmar
Stroeven, Arjen
spellingShingle Kleman, Johan
Hättestrand, Clas
Borgström, Ingmar
Stroeven, Arjen
Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
author_facet Kleman, Johan
Hättestrand, Clas
Borgström, Ingmar
Stroeven, Arjen
author_sort Kleman, Johan
title Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
title_short Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
title_full Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
title_fullStr Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
title_full_unstemmed Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
title_sort fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model
publisher Cambridge University Press (CUP)
publishDate 1997
url http://dx.doi.org/10.1017/s0022143000003233
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000003233
genre Fennoscandia
Fennoscandian
Ice Sheet
Journal of Glaciology
genre_facet Fennoscandia
Fennoscandian
Ice Sheet
Journal of Glaciology
op_source Journal of Glaciology
volume 43, issue 144, page 283-299
ISSN 0022-1430 1727-5652
op_doi https://doi.org/10.1017/s0022143000003233
container_title Journal of Glaciology
container_volume 43
container_issue 144
container_start_page 283
op_container_end_page 299
_version_ 1810443509649375232