Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: I. Techniques and observations

Abstract To gain new insight into the mechanisms of basal motion, we have demonstrated the feasibility of an active seismic technique to measure temporal changes in basal conditions on sub-hourly time-scales. One region of the bed of Black Rapids Glacier, Alaska, U.S.A., was monitored for a period o...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Nolan, Matt, Echelmeyer, Keith
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1999
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000003105
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000003105
Description
Summary:Abstract To gain new insight into the mechanisms of basal motion, we have demonstrated the feasibility of an active seismic technique to measure temporal changes in basal conditions on sub-hourly time-scales. One region of the bed of Black Rapids Glacier, Alaska, U.S.A., was monitored for a period of 45 days using seismic reflections. The majority of these reflections were nearly identical. However, three significant anomalies were recorded several days apart. These corresponded with the englacial drainage of two ice-marginal lakes and one supraglacial pothole, each up-glacier of the study site, as well as dramatic increases in basal motion. Two of these seismic anomalies revealed identical changes over 1 km 2 of the bed despite the fact that their drainage events occurred at different locations. Further, these two seismic anomalies were followed by records identical to the non-anomalous state, showing that the seismic changes were reversible. In one of these events, two records taken 36 min apart revealed that the transition between the anomalous and normal states occurred completely within this short interval.