New palaeomagnetic, petrographic and 40 Ar/ 39 Ar data to test palaeogeographic reconstructions of Caledonide Svalbard

Abstract New palaeomagnetic and petrographic data are presented from Cambrian rocks of SW Svalbard to test, for the first time, Palaeozoic reconstructions of the major terranes of Svalbard. In the course of thermal demagnetization three ChRM (characteristic remanent magnetization) components were id...

Full description

Bibliographic Details
Published in:Geological Magazine
Main Authors: MICHALSKI, KRZYSZTOF, LEWANDOWSKI, MAREK, MANBY, GEOFF
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2011
Subjects:
Online Access:http://dx.doi.org/10.1017/s0016756811000835
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0016756811000835
Description
Summary:Abstract New palaeomagnetic and petrographic data are presented from Cambrian rocks of SW Svalbard to test, for the first time, Palaeozoic reconstructions of the major terranes of Svalbard. In the course of thermal demagnetization three ChRM (characteristic remanent magnetization) components were identified, which were labelled HORNL, HORNM and HORNH, respectively, on the basis of their different unblocking temperatures. The HORNM magnetization is related to the Late Ordovician–Silurian formation of the synmetamorphic S 1 foliation. The HORNM palaeopole (Φ = −18.5°, Λ = 359°, D p /D m = 5.8°/11.4°, Plat = 6°N) matches exactly the Silurian sectors of the Baltica–Laurentia apparent polar wander paths after the closure of Iapetus (455–415 Ma). The 450 Ma 40 Ar– 39 Ar age determination from mica ages obtained from the broad zone of mylonites along the Billefjorden Fault Zone which separates the Central and Eastern terranes, also suggests that the two terranes were eventually amalgamated by 450 Ma. The HORNM VGP also lies very near the palaeopole derived from the Middle Proterozoic rocks of the Eastern Terrane (Ny Friesland), metamorphosed during Caledonian time, suggesting its close proximity to the study area (Central Terrane). The present study has shown that at least two of the major terranes of Svalbard, as defined by previous authors, occupied similar geographical locations by Silurian time, and the previously proposed large-scale Late Devonian left lateral displacements are not supported.