A shallow detachment beneath the North Greenland fold belt: implications for sedimentation and tectonics

Abstract In northern Greenland in early Palaeozoic time a turbidite trough (the eastward extension of the Hazen trough of Arctic Canada) was flanked to the south by a carbonate platform. The trough was deformed during the mid-Palaeozoic Ellesmerian orogeny to form the E–W trending North Greenland fo...

Full description

Bibliographic Details
Published in:Geological Magazine
Main Authors: Soper, N. J, Higgins, A. K.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1987
Subjects:
Online Access:http://dx.doi.org/10.1017/s0016756800017027
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0016756800017027
Description
Summary:Abstract In northern Greenland in early Palaeozoic time a turbidite trough (the eastward extension of the Hazen trough of Arctic Canada) was flanked to the south by a carbonate platform. The trough was deformed during the mid-Palaeozoic Ellesmerian orogeny to form the E–W trending North Greenland fold belt. This fold belt was deformed further by Eurekan (Tertiary) structures, important among which is a major fault complex, the Harder Fjord fault zone (HFFZ). The suggestion has been made that this fault zone controlled early Cambrian sedimentation, even though the fault trace does not coincide with the trough–platform facies transition in sediments of that age; this has led to some controversy. We report new information from a mapping programme by the Geological Survey of Greenland which has established the thin-skinned nature of Ellesmerian deformation at the trough-platform transition and implies that much of the fold belt is underlain by a shallow detachment. This in turn implies that the HFFZ exists in the hanging-wall of the detachment while the early Cambrian trough-platform transition is located autochthonously in the foot-wall. We adduce evidence to show that the latter was probably controlled by syndepositional faulting with actively eroding fault scarps and suggest that these basement structures were reactivated in a dextral strike-slip mode in early Tertiary time to form the HFFZ as now observed.