Formation and persistence of glaciovolcanic voids explored with analytical and numerical models

Abstract One fifth of Earth's volcanoes are covered by snow or ice and many have active geothermal systems that interact with the overlying ice. These glaciovolcanic interactions can melt voids into glaciers, and are subject to controls exerted by ice dynamics and geothermal heat output. Glacio...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Unnsteinsson, Tryggvi, Flowers, Gwenn E., Williams-Jones, Glyn
Other Authors: Natural Sciences and Engineering Research Council of Canada, Simon Fraser University
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2024
Subjects:
Online Access:http://dx.doi.org/10.1017/jog.2024.8
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S002214302400008X
Description
Summary:Abstract One fifth of Earth's volcanoes are covered by snow or ice and many have active geothermal systems that interact with the overlying ice. These glaciovolcanic interactions can melt voids into glaciers, and are subject to controls exerted by ice dynamics and geothermal heat output. Glaciovolcanic voids have been observed to form prior to volcanic eruptions, which raised concerns when such features were discovered within Job Glacier on Qw̓elqw̓elústen (Mount Meager Volcanic Complex), British Columbia, Canada. In this study we model the formation, evolution, and steady-state morphology of glaciovolcanic voids using analytical and numerical models. Analytical steady-state void geometries show cave height limited to one quarter of the ice thickness, while numerical model results suggest the void height h scales with ice thickness H and geothermal heat flux $\dot {Q}$ as $h/H = a H^b \dot {Q}^c$ , with exponents b = − n /2 and c = 1/2 where n is the creep exponent. Applying this scaling to the glaciovolcanic voids within Job Glacier suggests the potential for total geothermal heat flux in excess of 10 MW. Our results show that relative changes in ice thickness are more influential in glaciovolcanic void formation and evolution than relative changes in geothermal heat flux.