Spectral albedo of coastal landfast sea ice in Prydz Bay, Antarctica

Abstract The surface spectral albedo was measured over coastal landfast sea ice in Prydz Bay (off Zhongshan Station), East Antarctica from 5 October to 26 November of 2016. The mean albedo decreased from late-spring to early-summer, mainly responding to the change in surface conditions from dry (pha...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Hao, Guanghua, Pirazzini, Roberta, Yang, Qinghua, Tian, Zhongxiang, Liu, Changwei
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2020
Subjects:
Online Access:http://dx.doi.org/10.1017/jog.2020.90
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143020000908
Description
Summary:Abstract The surface spectral albedo was measured over coastal landfast sea ice in Prydz Bay (off Zhongshan Station), East Antarctica from 5 October to 26 November of 2016. The mean albedo decreased from late-spring to early-summer, mainly responding to the change in surface conditions from dry (phase I) to wet (phase II). The evolution of the albedo was strongly influenced by the surface conditions, with alternation of frequent snowfall events and katabatic wind that induce snow blowing at the surface. The two phases and day-to-day albedo variability were more pronounced in the near-infrared albedo wavelengths than in the visible ones, as the near-infrared photons are more sensitive to snow metamorphism, and to changes in the uppermost millimeters and water content of the surface. The albedo diurnal cycle during clear sky conditions was asymmetric with respect to noon, decreasing from morning to evening over full and patchy snow cover, and decreasing more rapidly in the morning over bare ice. We conclude that snow and ice metamorphism and surface melting dominated over the solar elevation angle dependency in shaping the albedo evolution. However, we realize that more detailed surface observations are needed to clarify and quantify the role of the various surface processes.