Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland
Abstract Retreat of calving glaciers worldwide has contributed substantially to sea-level rise in recent decades. Mass loss by calving contributes significantly to the uncertainty of sea-level rise projections. At Bowdoin Glacier, Northwest Greenland, most calving occurs by a few large events result...
Published in: | Journal of Glaciology |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
2019
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/jog.2019.89 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143019000893 |
Summary: | Abstract Retreat of calving glaciers worldwide has contributed substantially to sea-level rise in recent decades. Mass loss by calving contributes significantly to the uncertainty of sea-level rise projections. At Bowdoin Glacier, Northwest Greenland, most calving occurs by a few large events resulting from kilometre-scale fractures forming parallel to the calving front. High-resolution terrestrial radar interferometry data of such an event reveal that crevasse opening is fastest at low tide and accelerates during the final 36 h before calving. Using the ice flow model Elmer/Ice, we identify the crevasse water level as a key driver of modelled opening rates. Sea water-level variations in the range of local tidal amplitude (1 m) can reproduce observed opening rate fluctuations, provided crevasse water level is at least 4 m above the low-tide sea level. The accelerated opening rates within the final 36 h before calving can be modelled by additional meltwater input into the crevasse, enhanced ice cliff undercutting by submarine melt, ice damage increase due to tidal cyclic fatigue, crevasse deepening or a combination of these processes. Our results highlight the influence of surface meltwater and tides on crevasse opening leading to major calving events at grounded tidewater glaciers such as Bowdoin. |
---|