Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica

Abstract Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propos...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Kassab, Christine M., Licht, Kathy J., Petersson, Rickard, Lindbäck, Katrin, Graly, Joseph A., Kaplan, Michael R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1017/jog.2019.83
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143019000832
Description
Summary:Abstract Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during colder glacial periods or entrained more proximal to the moraine sequence.