Spatial and temporal variations of the surface albedo and other factors influencing Urumqi Glacier No. 1 in Tien Shan, China
ABSTRACT Glacier albedo controls the surface energy budget, the variability of which affects the glacier surface melt rate and, in turn, impacts the mass balance of the glacier. During 2013 and 2014, spatial and temporal variations of albedo were investigated using 18 Landsat images of Urumqi Glacie...
Published in: | Journal of Glaciology |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
2017
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/jog.2017.57 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143017000570 |
Summary: | ABSTRACT Glacier albedo controls the surface energy budget, the variability of which affects the glacier surface melt rate and, in turn, impacts the mass balance of the glacier. During 2013 and 2014, spatial and temporal variations of albedo were investigated using 18 Landsat images of Urumqi Glacier No. 1. Factors influencing these spatiotemporal profiles were analyzed. An established retrieval process, including geolocation, radiometric calibration, atmospheric, topographic, and anisotropic correction and narrow- to broadband conversion, was applied for the first time to Landsat-8 images. Differences between Landsat image derived albedo values and albedo values measured using a handheld spectroradiometer ranged from −0.024 to 0.049. Spatial and temporal variations of surface albedo were significant, especially in the ablation area. The variability of the values of ice albedo ranged from 0.06 to 0.44 due to topographic effects and light-absorbing impurities. The results suggest that this retrieval method can be used to investigate the spatial and temporal variability of surface albedo from Landsat-8 images on mountain glaciers. Moreover, as constant albedo values for ice and snow cannot be assumed, the distribution of albedo was not completely dependent on altitude under conditions of more intense ablation, and by reason of light-absorbing impurities during the melt season. |
---|