Diffusive-convection staircases in the polar oceans: the interplay between double diffusion and turbulence
Numerical simulations have been conducted to examine the structure of diffusive-convection staircases in the presence of vortical-mode-induced turbulent forcing. By modulating the input power $P$ and the background density ratio $R_\rho$ , we have identified three distinct types of staircase structu...
Published in: | Journal of Fluid Mechanics |
---|---|
Main Authors: | , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
2024
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/jfm.2024.224 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022112024002246 |
Summary: | Numerical simulations have been conducted to examine the structure of diffusive-convection staircases in the presence of vortical-mode-induced turbulent forcing. By modulating the input power $P$ and the background density ratio $R_\rho$ , we have identified three distinct types of staircase structures in these simulations: namely staircases maintained in the system driven by double-diffusion, by turbulence or by a combination of both double-diffusion and turbulence. While we showed that staircases maintained in the double-diffusion-dominated system are accurately characterised by the existing model originally proposed by Linden & Shirtcliffe ( J. Fluid Mech. , vol. 87, no. 3, 1978, pp. 417–432), we introduced new physical models to describe the staircase structures maintained in the turbulence-dominated system and the system driven by both turbulence and double-diffusion. Our integrated model reveals that turbulence fundamentally governs the entire life cycle of the diffusive-convection staircases, encompassing their formation, maintenance and eventual disruption in the Arctic Ocean's thermohaline staircases. While our previous work of Ma & Peltier ( J. Fluid Mech. , vol. 931, 2022 b ) demonstrated that turbulence could initiate the formation of Arctic staircases, these staircases are sustained by both turbulence and double-diffusion acting together after formation has occurred. Strong turbulence may disrupt staircase structures; however, the presence of weak turbulence could lead to unstable stratification within mixed layers of the staircases, as well as enhancing vertical heat and salt fluxes. Turbulence can even sustain a stable staircase structure factor when $R_\rho$ is relatively large, following a similar mechanism to the density staircases observed in laboratory experiments. Consequently, previous parameterisations (e.g. Kelley, J. Geophys. Res.: Oceans , vol. 95, no. C3, 1990, pp. 3365–3371) on the vertical heat flux across the diffusive-convection staircases may provide a significant ... |
---|