Coeval brittle and ductile deformation beneath the late Wisconsinan Puget Lobe, Washington State, USA

Abstract Late Wisconsinan glacial sediments, exposed on Whidbey Island and Camano Island, Puget Sound (Washington State, USA), were deposited in a proglacial shallow marine/outwash environment during northward retreat of the Puget Lobe of the Cordilleran ice sheet. Sediments mainly comprise massive...

Full description

Bibliographic Details
Published in:Annals of Glaciology
Main Author: Knight, Jasper
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1017/aog.2019.33
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0260305519000338
Description
Summary:Abstract Late Wisconsinan glacial sediments, exposed on Whidbey Island and Camano Island, Puget Sound (Washington State, USA), were deposited in a proglacial shallow marine/outwash environment during northward retreat of the Puget Lobe of the Cordilleran ice sheet. Sediments mainly comprise massive and cross-bedded sand and gravels, and rhythmically-bedded clay and silt/fine sand couplets, interbedded with diamictons that were deposited by a range of mass flows of different viscosities. Although sediment stratigraphy and ice advance–retreat patterns are well established for the Puget Lobe, brittle and ductile deformation structures within, and separating, these sediment units are less well understood. These structures record the nature of ice–bed interactions taking place in subglacial and proglacial environments. This study examines evidence for these processes and environments. Key deformation structures identified include open to overturned folds, normal and reverse faults, clastic dikes and hydrofractures and passive-loading structures. Evidence for coeval development of ductile and brittle deformation structures shows the close relationship between porewater changes, sediment rheology and sediment system responses to changes in strain caused by ice–bed interactions.