Plankton Ecology and the Paleoceanographic–Climatic Record

Abstract The paleoceanographic–climatic record represented by deep-sea microfossils reflects conditions for only certain times of the year. Also, the relative abundances of microfossil species in deep-sea sediments do not usually reflect only one paleoceanographic variable, such as temperature. Rath...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Author: Loubere, Paul
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1982
Subjects:
Online Access:http://dx.doi.org/10.1016/0033-5894(82)90026-6
http://api.elsevier.com/content/article/PII:0033589482900266?httpAccept=text/xml
http://api.elsevier.com/content/article/PII:0033589482900266?httpAccept=text/plain
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589400022225
Description
Summary:Abstract The paleoceanographic–climatic record represented by deep-sea microfossils reflects conditions for only certain times of the year. Also, the relative abundances of microfossil species in deep-sea sediments do not usually reflect only one paleoceanographic variable, such as temperature. Rather, species distributions represent the integration of many factors that control biological production in the oceans. This influences the information on past climates that can be extracted from fossil material. The seasonal limitation is due to the cyclic nature of biological production in the open ocean. Case studies of the sediment record in the Atlantic for two species of planktonic Foraminifera, left-coiling Neogloboquadrina pachyderma (Ehrenberg) and Globigerinoides ruber (d'Orbigny), illustrate seasonal bias in environmental data reported by the relative abundances of species in deep-sea sediments. In addition, the study of G. ruber illustrates the operation of two oceanographic parameters in controlling a species distribution. These examples demonstrate that the environmental signal in the sediments is the result of the interplay of the ecological tolerance of the plankton species with seasonally variable biological and physical properties of the upper ocean.