Applications of a Rapid Endospore Viability Assay for Monitoring UV Inactivation and Characterizing Arctic Ice Cores

ABSTRACT We have developed a rapid endospore viability assay (EVA) in which endospore germination serves as an indicator for viability and applied it to (i) monitor UV inactivation of endospores as a function of dose and (ii) determine the proportion of viable endospores in arctic ice cores (Greenla...

Full description

Bibliographic Details
Published in:Applied and Environmental Microbiology
Main Authors: Shafaat, Hannah S., Ponce, Adrian
Format: Article in Journal/Newspaper
Language:English
Published: American Society for Microbiology 2006
Subjects:
Online Access:http://dx.doi.org/10.1128/aem.00255-06
https://journals.asm.org/doi/pdf/10.1128/AEM.00255-06
Description
Summary:ABSTRACT We have developed a rapid endospore viability assay (EVA) in which endospore germination serves as an indicator for viability and applied it to (i) monitor UV inactivation of endospores as a function of dose and (ii) determine the proportion of viable endospores in arctic ice cores (Greenland Ice Sheet Project 2 [GISP2] cores; 94 m). EVA is based on the detection of dipicolinic acid (DPA), which is released from endospores during germination. DPA concentrations were determined using the terbium ion (Tb 3+ )-DPA luminescence assay, and germination was induced by l -alanine addition. The concentrations of germinable endospores were determined by comparison to a standard curve. Parallel EVA and phase-contrast microscopy experiments to determine the percentage of germinable spores yielded comparable results (54.3% ± 3.8% and 48.9% ± 4.5%, respectively), while only 27.8% ± 7.6% of spores produced CFU. EVA was applied to monitor the inactivation of spore suspensions as a function of UV dose, yielding reproducible correlations between EVA and CFU inactivation data. The 90% inactivation doses were 2,773 J/m 2 , 3,947 J/m 2 , and 1,322 J/m 2 for EVA, phase-contrast microscopy, and CFU reduction, respectively. Finally, EVA was applied to quantify germinable and total endospore concentrations in two GISP2 ice cores. The first ice core contained 295 ± 19 germinable spores/ml and 369 ± 36 total spores/ml (i.e., the percentage of germinable endospores was 79.9% ± 9.3%), and the second core contained 131 ± 4 germinable spores/ml and 162 ± 17 total spores/ml (i.e., the percentage of germinable endospores was 80.9% ± 8.8%), whereas only 2 CFU/ml were detected by culturing.