Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change

Among the greenhouse gases (GHGs), atmospheric water vapor is the most abundant, has a large influence on the radiation budget of Earth, and plays a decisive role in regional weather processes. We investigate the long-term (1980–2020) changes in global tropospheric water vapor using satellite, radio...

Full description

Bibliographic Details
Published in:Ocean-Land-Atmosphere Research
Main Authors: Patel, Vikas Kumar, Kuttippurath, Jayanarayanan
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science (AAAS) 2023
Subjects:
Online Access:http://dx.doi.org/10.34133/olar.0015
https://spj.science.org/doi/pdf/10.34133/olar.0015
id craaas:10.34133/olar.0015
record_format openpolar
spelling craaas:10.34133/olar.0015 2024-09-30T14:31:01+00:00 Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change Patel, Vikas Kumar Kuttippurath, Jayanarayanan 2023 http://dx.doi.org/10.34133/olar.0015 https://spj.science.org/doi/pdf/10.34133/olar.0015 en eng American Association for the Advancement of Science (AAAS) Ocean-Land-Atmosphere Research volume 2 ISSN 2771-0378 journal-article 2023 craaas https://doi.org/10.34133/olar.0015 2024-09-12T04:01:41Z Among the greenhouse gases (GHGs), atmospheric water vapor is the most abundant, has a large influence on the radiation budget of Earth, and plays a decisive role in regional weather processes. We investigate the long-term (1980–2020) changes in global tropospheric water vapor using satellite, radiosonde, and reanalysis data and assess the impact of changes in water vapor on regional and global climate with respect to its radiative feedback. The annual climatology of global tropospheric water vapor varies from 5 to 60 kg/m 2 across different regions. Except in the tropics, there is a strong seasonal cycle in both the southern and northern hemispheres, with the highest values in summer (25 to 65 kg/m 2 ) and smallest values in winter (5 to 20 kg/m 2 ). Most regions show positive trends in the annual mean tropospheric water vapor, at about 0.025 to 0.1 kg/m 2 /year, for the period of 1980–2020, with a notable increase in the Arctic because of the high rise in temperature there. Throughout the troposphere (except 200 hPa), the annual mean specific humidity shows significant positive trends over both land and oceans, with the highest values of approximately 0.015 g/kg/year at 1000 hPa in the tropics. The associated radiative effects on shortwaves at the surface vary from −5 to −70 W/m 2 , with the highest values at Manaus, Porto, and Hanty–Mawsijsk (tropical stations) and the smallest values of about −5 to −10 W/m 2 in the polar regions. The model projections for future high-emission scenarios show a large increase in atmospheric water vapor, approximately twice the current value in the polar latitudes by the end of the 21st century. This is a great concern for global and regional climate, as the rise in water vapor would further augment global warming and phenomena, such as the Arctic amplification. Therefore, this study cautions that there is a significant rise in tropospheric water vapor across latitudes and altitudes, which could further increase the global temperature and, thus, accelerate global climate change. Article in Journal/Newspaper Arctic Climate change Global warming AAAS Resource Center (American Association for the Advancement of Science) Arctic Ocean-Land-Atmosphere Research 2
institution Open Polar
collection AAAS Resource Center (American Association for the Advancement of Science)
op_collection_id craaas
language English
description Among the greenhouse gases (GHGs), atmospheric water vapor is the most abundant, has a large influence on the radiation budget of Earth, and plays a decisive role in regional weather processes. We investigate the long-term (1980–2020) changes in global tropospheric water vapor using satellite, radiosonde, and reanalysis data and assess the impact of changes in water vapor on regional and global climate with respect to its radiative feedback. The annual climatology of global tropospheric water vapor varies from 5 to 60 kg/m 2 across different regions. Except in the tropics, there is a strong seasonal cycle in both the southern and northern hemispheres, with the highest values in summer (25 to 65 kg/m 2 ) and smallest values in winter (5 to 20 kg/m 2 ). Most regions show positive trends in the annual mean tropospheric water vapor, at about 0.025 to 0.1 kg/m 2 /year, for the period of 1980–2020, with a notable increase in the Arctic because of the high rise in temperature there. Throughout the troposphere (except 200 hPa), the annual mean specific humidity shows significant positive trends over both land and oceans, with the highest values of approximately 0.015 g/kg/year at 1000 hPa in the tropics. The associated radiative effects on shortwaves at the surface vary from −5 to −70 W/m 2 , with the highest values at Manaus, Porto, and Hanty–Mawsijsk (tropical stations) and the smallest values of about −5 to −10 W/m 2 in the polar regions. The model projections for future high-emission scenarios show a large increase in atmospheric water vapor, approximately twice the current value in the polar latitudes by the end of the 21st century. This is a great concern for global and regional climate, as the rise in water vapor would further augment global warming and phenomena, such as the Arctic amplification. Therefore, this study cautions that there is a significant rise in tropospheric water vapor across latitudes and altitudes, which could further increase the global temperature and, thus, accelerate global climate change.
format Article in Journal/Newspaper
author Patel, Vikas Kumar
Kuttippurath, Jayanarayanan
spellingShingle Patel, Vikas Kumar
Kuttippurath, Jayanarayanan
Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change
author_facet Patel, Vikas Kumar
Kuttippurath, Jayanarayanan
author_sort Patel, Vikas Kumar
title Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change
title_short Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change
title_full Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change
title_fullStr Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change
title_full_unstemmed Increase in Tropospheric Water Vapor Amplifies Global Warming and Climate Change
title_sort increase in tropospheric water vapor amplifies global warming and climate change
publisher American Association for the Advancement of Science (AAAS)
publishDate 2023
url http://dx.doi.org/10.34133/olar.0015
https://spj.science.org/doi/pdf/10.34133/olar.0015
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
Global warming
genre_facet Arctic
Climate change
Global warming
op_source Ocean-Land-Atmosphere Research
volume 2
ISSN 2771-0378
op_doi https://doi.org/10.34133/olar.0015
container_title Ocean-Land-Atmosphere Research
container_volume 2
_version_ 1811635701184200704