Simulated Rapid Warming of Abyssal North Pacific Waters
Warming the Deep The coldest ocean waters are located at the bottoms of the major ocean basins, and, because it takes a long time for water to sink from the surface to these regions, they are relatively isolated from the warming trends that are now occurring at shallower depths. However, warming in...
Published in: | Science |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Association for the Advancement of Science (AAAS)
2010
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1126/science.1188703 https://www.science.org/doi/pdf/10.1126/science.1188703 |
Summary: | Warming the Deep The coldest ocean waters are located at the bottoms of the major ocean basins, and, because it takes a long time for water to sink from the surface to these regions, they are relatively isolated from the warming trends that are now occurring at shallower depths. However, warming in these deep waters has recently been observed, sooner than anticipated. Masuda et al. (p. 319 , published online 24 June) performed computer simulations of ocean circulation and found that internal waves are able to transport heat rapidly from the surface waters around Antarctica to the bottom of the North Pacific, which can occur within four decades, rather than the centuries that conventional mechanisms have suggested. |
---|