Coupled 142 Nd- 143 Nd Isotopic Evidence for Hadean Mantle Dynamics

The oldest rocks—3.85 billion years old—from southwest Greenland have coupled neodymium-142 excesses (from decay of now-extinct samarium-146; half-life, 103 million years) and neodymium-143 excesses (from decay of samarium-147; half-life, 106 billion years), relative to chondritic meteorites, that d...

Full description

Bibliographic Details
Published in:Science
Main Authors: Bennett, Vickie C., Brandon, Alan D., Nutman, Allen P.
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science (AAAS) 2007
Subjects:
Online Access:http://dx.doi.org/10.1126/science.1145928
https://www.science.org/doi/pdf/10.1126/science.1145928
Description
Summary:The oldest rocks—3.85 billion years old—from southwest Greenland have coupled neodymium-142 excesses (from decay of now-extinct samarium-146; half-life, 103 million years) and neodymium-143 excesses (from decay of samarium-147; half-life, 106 billion years), relative to chondritic meteorites, that directly date the formation of chemically distinct silicate reservoirs in the first 30 million to 75 million years of Earth history. The differences in 142 Nd signatures of coeval rocks from the two most extensive crustal relicts more than 3.6 billion years old, in Western Australia and southwest Greenland, reveal early-formed large-scale chemical heterogeneities in Earth's mantle that persisted for at least the first billion years of Earth history. Temporal variations in 142 Nd signatures track the subsequent incomplete remixing of very-early-formed mantle chemical domains.