Velocity Structure of a Gas Hydrate Reflector
Seismic reflection profiles across many continental margins have imaged bottom-simulating reflectors (BSRs) parallel to the seabed; these are often interpreted as the base of a zone in which methane hydrate "ice" is stable. Waveform inversion of seismic reflection data can be used to estim...
Published in: | Science |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Association for the Advancement of Science (AAAS)
1993
|
Subjects: | |
Online Access: | https://doi.org/10.1126/science.260.5105.204 https://www.science.org/doi/pdf/10.1126/science.260.5105.204 |
Summary: | Seismic reflection profiles across many continental margins have imaged bottom-simulating reflectors (BSRs) parallel to the seabed; these are often interpreted as the base of a zone in which methane hydrate "ice" is stable. Waveform inversion of seismic reflection data can be used to estimate from seismic data worldwide the velocity structure of a BSR and its thickness. A test of this method at a drill site of the Ocean Drilling Program predicts that sediment pores beneath the BSR contain free methane for approximately 30 meters. The hydrate and underlying gas represent a large global reservoir of methane, which may have economic importance and may influence global climate. |
---|